PROJEKT
ÜBER DIE
ERBAUUNG EINER
VERBINDUNGSSTRASSE
FÜR DIE GEMEINDE
WITTINE
POL. BEZ. AUSSIG.

Normalprofil
1:50
Stempelfrei nach Tarifpost 75 B

Technischer Bericht

zu den

Projekte einer Verbindungsstrasse

für die

Gemeinde WITTINE,

pol. Bezirk Aussig.
Die Gemeinde Wittine, im politischen Bezirke Aussig ist eine kleine, rein landwirtschaftliche Gebirgsgemeinde in einer Höhe von ca. 425 m über dem Meere.

Werden diese Verhältnisse schon in der Vorkriegszeit ungemein drückend, so sind sie in jetziger zeit hoher finanzieller Belastung der Landwirtschaft bis zur Unerträglichkeit
gesteigert worden und ihre Beseitigung ist eine Lebensfrage für die Gemeinde! Unter diesen Gesichtspunkten entschloß sich denn die Gemeinde Mittine an den Bau bezw. die Projektierung einer Verbindungsstraße mit dem Elbtal zu schreiten, bereit, hiefür selbst große Opfer zu bringen und mit dem bestimmten Bewußtsein von Seiten der maßgebenden Faktoren in Erkennung der ungeheueren Wichtigkeit dieses Unternehmens, wohlwollende und ausgiebige Unterstützung zu finden.

Für die Trassierung der Straße mußte der Umstand richtunggebend sein, den bequemsten und dabei kürzesten Weg ins Elbtal, und hier wieder nach Aussig, dem ersten Absatzorte für die Gemeinde zu finden. Wenn dabei nicht das Gelände westlich Mittine benutzt wurde, welches genügend Möglichkeiten bietet, ohne allzu große technische Schwierigkeiten die auftretenden maximalen Steigungen auf das normale Maß herab zu setzen, so ist dies einzig und allein dem Umstande zuzuschreiben, daß die Gemeinde den Ausbau einer in diesem Falle wenigstens 3,5 km langen Strassenstrasse für unerschwinglich hält und der notwendige Grundbesitz, der längs der projektierten Trasse nur geringe Kosten verursachen dürfte, im anderen Falle ganz ungewöhnlichen Schwierigkeiten begegnen würde. Außerdem wird die hier projektierte Strasse, entlang des sogenannten Tunnelweges, durch Schneeverwehungen bedeutend weniger zu leiden haben, als dies bei einer Trasse am kahlen, windfreien Hang westlich Mittine der Fall wäre.

So entschloß sich denn die Gemeinde Mittine an der hier projektierten Trasse festzuhalten, mit dem Bewußtsein, dabei ziemlich bedeutende Steigungen in Kauf nehmen zu müssen, deren Ausschaltung in dem sehr steilen Eingtale ohne größere Kunstbauten unmöglich war. Unter voller Würdigung des Vorhergesagten und mit Berücksichtigung des Umstandes, daß ein
weiterer Ausbau des projektierten Strassenzuges nur nach den kleinen Berggemeinden Alt – Hummel bezw. Zinken möglich ist, deren Bewohner, wir die von Wittine, gewöhnt sind, nur geringe Ladungen an steilen Berghängen zu transportieren, daß also diese Strasse niemals eine besondere Bedeutung als Durchzugsstrasse für große Gütermengen erlangen wird, kann man den hier eingeschlagenen Weg gut heißen!

Die projektierte Strasse zweigt von der bestehenden Bezirksstrasse Leschtine – Kleinpriesen ab, übersetzt den von Saubernitz kommenden Kreuzbach und schmiegt sich dann ziemlich eng an den Tunnelweg an, bis zur Ausmündung am Ortsplatz bei der Kapelle. Wie schon früher erwähnt, ist es in der engen Schlucht nur selten möglich, durch Einschaltung von Serpentinen die Trasse zu verlängern und dadurch die Durchschnittssteigung herabzusetzen. Eigentlich könnte dies nur an zwei Stellen zwischen km 0.6 – 0.7 und km 0.9 – 1.0 vorgenommen werden, wo die Schlucht sich durch die Ausmündung eines von Südosten kommenden kurzen Seiten oder tales etwas erweitert. Von dort führt die Trasse wieder an dem steilen Berghänge entlang, bis sie infolge der verminderten Steigung bei km 1.5 neuerdings in den Tunnelweg einfädelt. Hier ist zugleich der heikelste Punkt der Strasse, indem es ohne größere, technische Schwierigkeiten nicht möglich ist, die Steigung auf ein normales Maß zu beschränken. Bei km 1.80 zweigt die Trasse neuerdings vom bestehenden Wege an geeigneten Geländepunkten ab, die Steigung vermindert und, bzw. ausgleichend und endigt dann, wie schon erwähnt, bei der Kapelle am Ortsplatz.

Die gesamte Länge der Strasse ergibt sich auf diese Weise mit 2028 m, in welcher Länge ein gesamter Höhenunterschied von 243.427 m zu überwinden ist. Ihre Kronenbreite wurde mit 4.50 m festgelegt, wovon 3.50 m auf die eigentliche Fahrbahn und 2 x 0.50 m auf die beiderseitigen Gehsteige ent-
fallen. Die Fahrbahn ist aus einem Packlagerunterbau von 20 cm Höhe aus hochkantig gestellten festen Bruchsteinen gebildet und mit einem 10 cm starken Schotterüberzugsowie einer Gesandung von 3 cm Stärke versehen. Die Strassengräben, die auf der Einschnittseite angelegt werden, erhalten 40 cm Sohlenbreite und 40 cm Tiefe, bei einfühlsigen Böschungen. Die Dammböschungen des Strassenkörpers sind ebenfalls 1:1 geneigt und ist die Strasse auf der Dammseitemit 80 cm über Terrain ragenden fest fundierten Bordsteinen versehen. Die verhältnismäßig geringe Breite der Strassenkrone macht es erforderlich, einige verbreiterte Ausweichstellen anzulegen; es sind dies die Ausweichstellen 1, 2 und 3 zwischen km 0.5 - 0.6, 1.2 - 1.3 und 1.8 - 1.9, die an geeigneten, gut übersehbaren Punkten angelegt sind und an welchen sich bei gleichbleibender Breite der Gehsteige die Fahrbahn von 3.50 m auf 5 m verbreitert, nach beiden Seiten auf eine Länge von je 20 m verlaufend. Eine gleichartige verbreiterung erfährt die Fahrbahn auch an sehr engen Kurven, um eventuelle Langholztransporte ohne Schwierigkeit befördern zu können. Zur raschen Ableitung des Niederschlagswassers erhält der Strassenkörper in der Mitte der Fahrbahn eine Überhöhung (Bombage) von 15 cm.

Die projektierte Strasse schneidet im Längenmeter 20 - 26 den Kreuzbach. Die Überquerung geschieht durch eine einfache Eisenbetonplattenbalkenbrücke von 6.00 m Lichter
Spannweite, für eine maximale Belastung von 2500 kg pro m² Nutzlast. Die Dimensionierung der Brücke für diese hohe Nutzlast erscheint deshalb notwendig, weil die Möglichkeit besteht, daß schwere Lastentransporte, welche die Talstrasse passieren, immerhin auch zufällig, um umzukehren etc. die Brücke mit benützen können.

Die Berechnung gestaltet sich folgendermaßen:
1. Die Fahrbahnplatte auf 4 Stützen von 1,5m Feldweite; Eigengewicht und Schotterdecke 800 kg; Menschengedränge 400 kg/m² und Verkehrslast von 4 Tonnen. Daraus ergibt sich
\[p = \frac{Q}{F} = \frac{1000}{0.5 \times 1} = 2000 \text{ kg/m}². \] Als gleichmäßig verteilte Nutzlast werden jedoch 2500 kg/m² in Rechnung gestellt!

Daraus ergibt sich (Minkler) das resultierende Moment im Endfeld \(M_g + M_p = 14400 + 56250 = 70650 \text{ kgm} \)

Daraus ist die Plattenstärke: \(h' = 10.9 \text{ cm} - 11.0 \text{ cm}, h = 13.0 \text{ cm} \) und \(f_e = 6.03 \text{ cm}² \); nehmen daher 8 Stück Rundisen \(\sigma = 10.0 \text{ m/m} \)

Für die Armierung zur Aufnahme der negativen Momente erhalten wir für das Mittelfeld: \[f_e = \frac{M}{1065 \times 11} = 2.94 \text{ cm}² \] und nehmen 4 Eisen \(\sigma = 10.0 \text{ m/m} \)

Für die Armierung für die Mittelstützen:
\[72000 \text{ cm}² \]
\[1065 \times 11 \]
\[f_e = \frac{1065 \times 11}{1065} = 6.15 \text{ cm}² \]; nehmen 8 Eisen \(\sigma = 10.0 \text{ m/m} \)

Für den Plattenbalken erhalten wir,

Eigengewicht und ruhende Belastung 1500 kg/m²
Menschengedränge 400 kg/m²
Verkehrslast 4 Tonnen!

Gleichmäßig verteilte Belastung: 1500 + 1.5 + 400 = 2100 kg/lfm;
Einzellast bei ungünstigster Laststellung:
\[p = 2 \times \frac{1.5}{2100 \times 6.52 \times 100} = 1200 \text{ kg}. \]
Daraus ist \(M_{1\text{max}} = \frac{1200 \times 5.3}{2} = 1,110,000 \text{ kgcm}, \)
\(M_{2\text{max}} = \frac{1200 \times 5.3}{6.5} \times 265 = 260,000 \text{ kgm} \)

\[M_1 + M_2 = 1.370.000 \text{ kgcm} \]
\[f_e = \frac{28.6 \text{ cm}²}{1200 \times 40} = 0.0370000 \text{ cm}² \]; nehmen 8 Rundisen \(\sigma = 22 \text{ m/m} \).
Es ergibt sich daraus, wenn wir nun die Rechnung umgekehrt führen, die auftretende Eisenspannung $\sigma_e = 1160 \text{ kg/cm}^2$ (zulässig sind 1200 kg/cm2)

die Druckspannung des Betons $\sigma_z = 32 \text{ kg/cm}^2$ (zulässig sind 40 kg/cm2)

die größte Querkraft im Auflager beträgt 3760 kg;

\[\text{in der Trägermitte} \quad 760 \text{ kg}; \]

Die Schubspannung τ_0 beträgt im Auflager 10.3 kg und in der Trägermitte 0.9 kg; der Abstand vom Auflager, in welchem die Schubspannung den zulässigen Wert von 4.5 kg/cm2 übersteigt, beträgt 2.03 m!

Es ist weiter die überschüssige Schubspannung $\sigma = 11600 \text{ kg/m}^2$
daraus ist die durch aufgebogene Eisen aufzunehmende Zugkraft $Z = 11600 \times 1.41 = 16300 \text{ kg}$

Die hiefür notwendige Eisenquerschnittsfläche beträgt $f_z = 13.5 \text{ cm}^2$; wir nehmen 4 Rundisen $\sigma = 22 \text{ m/m}$.

Die Haftspannung ergibt sich mit $\tau_1 = \frac{10.3 \times 20}{8 \times 6.91} = 3.7 \text{ kg/cm}^2$ (zulässig sind 5.5 kg/cm2).

Die Brücke ist beiderseits soliden, eisernen Schutzgeländer versehen; sie ruht auf gut fundierten Widerlagern aus Bruchsteinmauerwerk in Zementmörtel. Ihre lichte Öffnung von 6.00 m läßt bei einem Wasserstande von 1.60 m und einer Geschwindigkeit von 3.0 m/Sek. eine Hochwassermenge von 28.6 m3 schadlos durch, welche Menge wohl bedeutend über dem tatsächlichen Maximum steht. Die Nachscholle erhält unter der Brücke eine solide Abpflasterung mit großen, gesunden Druchsteinen.

Nach dieser rudimentären Beschreibung sei bezüglich aller sonstigen Einzelheiten auf die vorliegende Detailarbeit verwiesen, und dieselbe noch mit dem Wunsche versehen, sie möge durch günstige Entwicklung der Zeitverhältnisse und die entsprechende Förderung durch die maßgebenden öffentlichen Stellen recht bald ihrer Verwirklichung entgegengehen zum Wohle der gesamten Gemeinde.

Aussig, im September, 1925.